Catalyst Structure-Performance Relationship Identified by High-Throughput Operando Method: New Insight for Silica-Supported Vanadium Oxide for Methanol Oxidation
نویسندگان
چکیده
The reaction mechanism of methanol oxidation catalyzed by vanadium oxides on a silica support (V2O5/ SiO2) was investigated in a high-throughput operando reactor coupled with a Fourier transform-infrared (FT-IR) imaging system for rapid product analysis and six parallel, in situ Raman spectroscopy probes for catalyst characterization. Up to six V2O5/SiO2 catalysts with different vanadium loadings (i.e., from 0 to 7%) were simultaneously monitored under identical experimental conditions. The specific Raman bands of the different catalysts in the six parallel reaction channels are quantitatively determined in this work. Under steady-state reaction conditions, the Raman intensities of C–H stretch in Si–O–CH3 and V–O– CH3 were extensively studied at different reaction temperatures and different vanadium loadings. For the first time, we observed enhanced Si–O–CH3 formation on V2O5/SiO2 catalysts with low vanadium loadings. We attribute this phenomenon to surface cluster edge activation. Careful comparison of the in situ Raman intensity of V–O–CH3 on V2O5/SiO2 catalysts revealed different methoxy formation mechanisms in different reaction temperature regimes.
منابع مشابه
Vanadium oxide supported on mesocellulous silica foams (MCF): An efficient and reusable catalyst for selective oxidation of sulfides
A green, efficient and selective approach for the oxidation of sulfides to sulfoxides and sulfones with UHP at room temperature is reported. The reaction is performed in the presence of vanadia catalyst supported on mesocellular silica foam (MCF) with a V content ranging from 2% to 10% as heterogeneous and reusable catalyst. The structural and textural characterization of this catalyst were don...
متن کاملDirect oxidation of benzene to phenol in liquid phase by H2O2 over vanadium catalyst supported on highly ordered nanoporous silica
Vanadium supported on highly ordered nanoporous silica (VOx-LUS-1) was synthesized and characterized by XRD, Nitrogen adsorption‑desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide were examined by using various solvents (methanol, acetone, acetic acid, acetonitryl). The maximum yield (25%) and selectivity (73%) of the ph...
متن کاملPartial Oxidation of Methanol over Highly Dispersed Vanadia Supported on Silica SBA-15
The partial oxidation of methanol to formaldehyde was studied over highly dispersed vanadia supported on mesoporous silica SBA-15 (VOx/SBA-15). VOx/SBA-15 catalysts were prepared by a novel grafting/ion-exchange method and characterized using UV-VISand Raman spectroscopy. The resulting surface vanadium oxide species (0 – 2.3 V/nm), grafted on the inner pores of the SBA-15 silica matrix, consist...
متن کاملSynthesis and photocatalytic activity of nanosized modified mesocellulous silica foams (MCFs) with PW12 and vanadium oxide
A series of tungestophosphoric acid and vanadium oxide supported on Mesocellulous Silica Foams (MCFs) featuring a well-defined three-dimensional (3D) mesoporosity were studied with regard to their performance in the photocatalytic activity to degrade Oezine Y (OY). This nanosized mesoporous catalyst (PW12@V-MCF) was characterized by FTIR, XRD, BET and TEM. XRD shows that the structure of MCF re...
متن کاملSynthesis and photocatalytic activity of nanosized modified mesocellulous silica foams (MCFs) with PW12 and vanadium oxide
A series of tungestophosphoric acid and vanadium oxide supported on Mesocellulous Silica Foams (MCFs) featuring a well-defined three-dimensional (3D) mesoporosity were studied with regard to their performance in the photocatalytic activity to degrade Oezine Y (OY). This nanosized mesoporous catalyst (PW12@V-MCF) was characterized by FTIR, XRD, BET and TEM. XRD shows that the structure of MCF re...
متن کامل